AY16-17

LEARNING OUTCOMES LEARNING ACTIVITIES

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
9. Design and perform	Class Discussion	Quizzes
relevant experiments	Group Problem Solving	Lecture Examinations
that generate scientific	Activities	Departmental Final
data pertaining to the	Integrated Laboratory	Laboratory Experiments
above outcome.	Techniques in Classical	
	and Molecular Genetics	
	Data Presentation	
	Computer-Based (Local	
	and Internet) Instruction	
10. Critique current	Class Discussion	Essays and or Term Paper
literature in molecular	Computer-Based (Local	
and classical genetics,	and Internet) Instruction	
including clinical	Written Assignments/	
applications.	Bibliographic Instruction in	
	Genetics	

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

Lecture Topics

- 1. Simple Mendelian inheritance
- 2. Chromosome theory of inheritance
- 3. Meiosis
- 4. Advanced Mendelian inheritance: multiple alleles, incomplete dominance, etc.
- 5. Linkage and genetic mapping
- 6. Mapping in fungi, bacteria and viruses
- 7. Biological systems of genetic analysis: yeast, *Drosophila*, *Arabidopsis*, mice, humans
- 8. Population genetics
- 9. DNA structure
- 10. Transcription and Translation
- 11. Recombinant DNA technology
- 12. Regulation of gene expression in prokaryotes and eukaryotes
- 13. Regulation of gene expression during development
- 14. Genomics
- 15. Chromosomal and DNA mutations, transposable elements
- 16. Genetics of cancer

Laboratory Experiments

- 1. Biology of Drosophila
- 2. Drosophila Autosomal & Sex linked Cross (lasts for 3 weeks)
- 3. Probability & Statistics in Genetics*
- 4. Basic molecular genetic techniques: pipetting, restriction enzymes, gel electrophoresis
- 5. Karyotypes (Web Assignment)*
- 6. Complementation testing in Ascomycete genetics (yeast)
- 7. Arabidopsis Genetics: PCR detection and molecular phenoptyping
- 8. Subcloning using pUC Vectors
- 9. Plasmid Miniprep and Restriction Enzyme Analysis
- 10. Blast Searches and Sequence Alignments (PC lab and out of class)
- 11. PCR Based DNA Fingerprinting

LEARNING MATERIALS:

Required Text:

Klug, Cummings, Spencer & Palladino. (2012). Concepts of Genetics (10th