### Montgomery County Community College BIT 123 Techniques and Instrumentation for Biotechnology 4-2-3

## COURSE DESCRIPTION:

This course will allow students to gain theoretical and practical, hands-on knowledge of the operation, maintenance and calibration of commonly used and specialized laboratory instrumentation. Laboratory procedures will include solution preparation, aseptic technique, protein separations and assays, electrophoresis and recombinant DNA technology. The students will be introduced to the concept of working with good laboratory practices as they pertain to documentation and record keeping. Discussion and implementation of laboratory safety policies will be key components to the entire course. This course is subject to a course fee. Refer to <a href="http://mc3.edu/adm-fin-aid/paying/tuition/course-fees">http://mc3.edu/adm-fin-aid/paying/tuition/course-fees</a> for current rates.

### **REQUISITES:**

### Previous Course Requirements

CHE 131 Chemistry for Technology I, <u>or</u> CHE 151 Principles of Chemistry I (For students intending to transfer)

#### Concurrent Course Requirements

BIT 120 Introduction to Biotechnology may be taken concurrently, <u>or</u> may have been taken successfully in a prior semester

| LEARNING OUTCOMES                | LEARNING ACTIVITIES | EVALUATION METHOD |
|----------------------------------|---------------------|-------------------|
| Upon successful completion of    |                     |                   |
| this source, the student will be |                     |                   |
| this course, the student will be |                     |                   |
| able to:                         |                     |                   |
| 1. Describe laboratory           |                     |                   |
| safety practices and             |                     |                   |
| implement them when using        |                     |                   |
| high give and chamical           |                     |                   |
| biological and chemical          |                     |                   |
| materials in class activities    |                     |                   |

| Define Good Laboratory<br>Practices (GLP) and Good<br>Manufacturing Practices<br>(GMP).                                                                                                                                                                        | Reading and Problem-<br>Solving Assignments<br>Case studies                                                           |                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 4. Develop a written SOP for<br>a laboratory process or<br>instrument.                                                                                                                                                                                         | Lecture<br>Small Group Discussions<br>Laboratory Experiments<br>Reading and Problem-<br>Solving Assignments           | Section Examinations<br>Final Comprehensive<br>Examination<br>Lab exercises and<br>reports<br>Written assignment |
| <ul> <li>5. Operate, Calibrate and<br/>perform routine maintenance<br/>on standard equipment<br/>found in a biotechnology<br/>laboratory.</li> <li>6. Prepare and standardize<br/>various strengths of molar,<br/>normal and percent<br/>solutions.</li> </ul> | Lecture<br>Laboratory Experiments<br>Reading and Problem-<br>Solving Assignments<br>Lecture<br>JETQqQQ EMC q247.85 56 | Section Examinations<br>Final Comprehensive<br>Examination<br>Lab exercises and<br>reports                       |

setting.

- 6. If Possible, 1 Field Trip to a Biotech (or Related) Company to Acquire Knowledge in Use of Large Scale Instrumentation Not Available on Campus
- 7. Polymerase Chain Reaction and gel electrophoresis (1 experiment)
- 8. Aseptic technique as it pertains to microbial experiments and mammalian cell culture (3 experiments)
- 9. Bacterial Transformation (1 experiment)
- 10. Isolation of plasmid DNA (1 experiment)
- 11. Protein separation methods and electrophoresis (1 experiment)
- 12. Use of Computer Data Handling Systems (1 experiment)

# LEARNING MATERIALS:

Seidman, L.A. and Moore, C.J. (2009). *Basic Laboratory Methods for Biotechnology: Textbook and Laboratory Reference* (2<sup>nd</sup> ed.). Prentice Hall.

Other learning materials may be required and made available directly to the student and/or via the and/or course management system.

COURSE APPROVAL:

| Prepared by:                                                                                                          | Linda R. Rehfuss, Ph.D.  |                        | Date:      | 11/1/2004  |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|------------|------------|
| Board of Trustees Presentation                                                                                        |                          | Date:                  | 12/31/2004 |            |
| VPAA/Provost Compliance Verification:                                                                                 |                          | Date:                  | 7/1/2009   |            |
| Revised by:                                                                                                           | Kevin Lampe              | Dr. John C. Flynn, Jr. | Date:      | 2/2/2010   |
| VPAA/Provost                                                                                                          | Compliance Verification: |                        | Date:      | 6/22/2010  |
| Revised by: Margaret Bryans Ph.D.<br>VPAA/Provost or designee Compliance Verification:<br>Dr. Victoria Bastecki-Perez |                          | Date:                  | 12/22/2012 |            |
|                                                                                                                       |                          | Date:                  | 12/22/2012 |            |
| Revised by: N                                                                                                         | largaret Bryans Ph.D.    | erification:           | Date:      | 11/13/2017 |
| VPAA/Provost                                                                                                          | or designee Compliance V |                        | Date:      | 1/8/2018   |



. It

was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.