Montgomery County Community College CIS 111 Computer Science I: Programming and Concepts 3-2-2

COURSE DESCRIPTION:

This course introduces students to fundamental techniques, concepts and vocabulary of procedural programming and computer science. Emphasis is placed on programming in a high-level computer language such as Java or C++. This is the first course for computer majors.

REQUISITES:

- MAT 100 with a "C" or better or equivalent, or placing above (ABV) MAT100 on the mathematics placement test. OR
- CIS 1101 Programming for Everyone with a "C" or better

Concurrent Course Requirements None

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
 Demonstrate a working knowledge of the Java programming language including basic input/output (I/O), decisions, variable, loops, methods, parameter passing, arrays, and strings. 	Assigned Readings Lecture Student Discussions and/or Presentations Hands-On Lab Exercises Programming Projects Homework Assignments	Tests or Quizzes Program Portfolio Capstone Project Final Exam
2. Demonstrate effective problem-solving strategies and algorithms in the problem solving process.	Assigned Readings Lecture Student Discussions and/or Presentations Hands-On Lab Exercises Programming Projects Homework Assignments	Tests or Quizzes Program Portfolio Capstone project Final Exam

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
3. Produce well designed	Assigned Readings	Tests or Quizzes
and documented	Lecture	Program Portfolio
programs that are	Student Discussions and/or	
organized in a logical	Presentations	Capstone project
and efficient fashion.	Hands-On Lab Exercises	Final Exam
	Programming Projects	
	Homework Assignments	
4. Apply the basic	Assigned Readings	Tests or Quizzes
vocabulary and	Lecture	Graded Discussions or
fundamental concepts	Discussions and/or Student	Presentation
of computer science	Presentations	Assigned Papers Related
including:	Homework Assignments	to these Topics
a. History of computing		Final Exam
and computers		
b. Evolution of ideas and		
machines		
c. Binary numbers and		
data representation		
d. The Internet, HTML and		
Cloud Computing		
e. Codes of ethics and		
responsible conduct in		
computing.		
f. Computer science		
professions and the		
roles of individuals in		
computer science		
g. Computer Networking		
h. Operating System and		
Application software		

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

1. Computer Literacy

History of computing and computers An overview of computer systems and their uses Introduction to networking Basic computer functions and hardware for processing data o Input/Output

• Machine level representation of data (bits, bytes, etc.)

- Processor operations
- Storage (volatile and non-volatile)

Operating Systems and Application Software

- Role and functions
- Overview of uses of word processing, spreadsheet,, presentation and database software
- o Open source versus proprietary software
- A comparison of various high level language

An overview of the Internet, HTML and Cloud Computing Social impact of computers and ethical considerations

- Responsible conduct
- Data privacy
- Software licensing
- Computing threats
- o Environmental issues related to computing

Careers in computing

2. Programming

Introduction to syntax of programming language being used Algorithms and problem-solving

- Problem-solving strategies
- Role of algorithms in the problem-solving process
- o Basic concepts and properties of algorithms
- Debugging strategies
- o Flowcharting

Fundamental programming constructs

- o Variables
- o Data types
- o Expressions
- o Assignment
- Simple input/output (I/O)
- File input and output
- Conditional and iterative control structures
- o Methods
- Parameter passing

Fundamental Data Structures

- Single dimension arrays
- o Sorting and searching arrays
- Strings and string processing

LEARNING MATERIALS:

Dale & Lewis. Computer Science Illuminated (7th ed.) w/ Navigate2 access code. Jones and Bartlett.

978-1284155617

Gaddis, Tony. Starting Out w/ Java: From Control Structures through Objects + My Programming Lab, 7th ed. Pearson. 978-0135188637 Revised by: Jamie Bretz

Date: 2/9/2018