Montgomery County Community College EGR 214 Linear Electrical Systems II 4-3-3

COURSE DESCRIPTION:

This course introduces the concepts of linear systems theory as applied to electrical networks, AC steady state analysis, frequency response, two-port models, Fourier series, and Laplace transforms. This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITES: *Previous Course Requirements*

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
3. Examine the characteristics of a balanced, three-phase circuit, including basic wye and delta three- phase connections, in order to calculate voltage, current, and complex power in the same.	Lecture Problem-Solving Assignments Design of Experiments	Section Examination Design of Experiments Review
Examine the variable-		

EGR214 ACT335 17-18

- d. Effective or Rms Values
- e. The Power Factor
- f. Complex Power
- g. Power Factor Correction
- h. Single-Phase Three-Wire Circuits
- i. Safety Considerations
- j. Application Examples
- k. Design Applications

2. Magnetically Coupled Networks

- a. Mutual Inductance
- b. Energy Analysis
- c. The Ideal Transformer
- d. Safety Considerations
- e. Application Examples
- f. Design Applications

3. Polyphase Circuits

- a. Three-Phase Circuits
- b. Three-Phase Connections
- c. Source/Load Connections
- d. Power Relations
- e. Power Factor Correction
- f. Application Examples
- g. Design Examples

4. Variable Frequency Network Performance

- a. Variable Frequency Response Analysis
- b. Sinusoidal Frequency Analysis
- c. Resonant Circuits
- d. Scaling
- e. Filter Networks
- f. Application Examples
- g. Design Examples

5. The Laplace Transform

- a. Definition
- b. Two Important Singularity Functions
- c. Transform Pairs
- d. Properties of thT/F1 12 65C3 612 792 reW*nBT/FC3(a)-3(I)30(T)31(ran)-4(s)10(fo)-5(rm

- f. Steady-State Response
- g. Application Examples
- h. Design Examples

7. Fourier Analysis Techniques

- a. Fourier Series
- b. Fourier Transforms
- c. Application Examples
- d. Design Examples

LEARNING MATERIALS: Present selected text: Irwin, J.D. and Nelms, R.M. (2011). *Basic Engineering Circuit Analysis* (10th ed.). Wiley.

Simulation software – Multisim

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:Dean for STEMDate: 3/9/2013Prepared by:Dr. David Brookstein, Dean for STEMDate: 3/9/2013VPAA/Provost or designee Compliance Verification:
Victoria L. Bastecki-Perez, Ed.D.Date: 4/16/2013

Revised by: Gayathri Moorthy, Ph.D.