LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
4. Distinguish between the universal quantifier and the existential quantifier, and determine truth values of quantified statements.	Lectures Small Group Discussions and/or Projects Homework Quizzes Projects	Exams Quizzes Homework Projects
 Distinguish between sets and elements. Establish and use the notation of set theory. 	Lectures Small Group Discussions and/or Projects Homework Quizzes Projects	Exams Quizzes Homework Projects
 Define and apply principles of sets, subsets, and set equality. 	Lectures Small Group Discussions and/or Projects Homework Quizzes Projects	Exams Quizzes Homework Projects
 Define and use the basic algebraic properties of sets (including indexed families of sets) and use this knowledge to obtain more properties. 	Lectures Small Group Discussions and/or Projects Homework Quizzes Projects	Exams Quizzes Homework Projects
 Determine the validity of an argument, including providing counterexamples for false statements. 	Lectures Small Group Discussions and/or Projects Homework Quizzes Projects	Exams Quizzes Homework Projects
 Define the Cartesian Product of two sets. 	Lectures Small Group Discussions and/or Projects Homework Quizzes Projects	Exams Quizzes Homework Projects
10. Define basic properties of a relation (and the including relations from one set to another as a subset of a Cartesian Product.	Lectures Small Group Discussions and/or Projects Homework Quizzes Projects	Exams Quizzes Homework Projects

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
11. Define a function as a		
relation; determine the		
image and pre-image		
of functions; determine		
the bas		

- 10. Intro to Relations and their Properties; Equivalence Relations
- 11. Properties of Equivalence Relations; Congruence Modulo n
- 12. Intro to Functions; One-to-One Functions, Onto Functions
- 13. Intro to Functions; One-to-One Functions, Onto Functions
- 14. Application of Proofs to Properties of the Integers
- 15. Applications of Proofs to Cardinality of Sets

LEARNING MATERIALS:

Chartrand, Polimeni, Zhang. Mathematical Proofs: A Transition to Advanced

Mathematics. Pearson Publishing. ISBN: 13 978-0 321-39053-0.lication of Pe8048 Tc[0.)]TJEuavy