AV/Multimedia Materials Daily Reading Problem-Solving
Assignments

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
8. Use experimental	Lecture	Homework/Quiz
evidence to form	Small Group Discussions	Laboratory Report
tentative interpretations	Laboratory Experiments	Section Examinations
and conclusions.	Demonstrations	Final Exam
	AV/Multimedia Materials	
	Daily Reading	
	Problem-Solving	
	Assignments	

9. Assign meaningful measurement uncertainties and identify reasonable sources of experime

benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- 1. Simple Harmonic Motion
- 2. Waves and Harmonic Waves
- 3. Sound
- 4. Standing Waves
- 5. Electric Charge and Electric Fields
- 6. Electric Potential
- 7. Capacitance
- 8. Current and Resistance
- 9. DC Circuits
- 10. Magnetism and Magnetic Fields
- 11. Charged Particles in Magnetic Fields
- 12. Faraday's Law of Electromagnetic Induction
- 13. AC Circuits
- 14. Electromagnetic Waves and the Nature of Light
- 15. Mirrors and Lenses
- 16. Compound Optical Systems
- 17. Interference of Light
- 18. Diffraction of Light

SEQUENCE OF EXPERIMENTS:

- 1. Simple Harmonic Motion
- 2. Standing Waves and Resonance
- 3. Mapping Electric Fields
- 4. The Oscilloscope
- 5. Basic DC Circuits
- 6. RC Time Constant
- 7. Charged Particles in Magnetic Fields
- 8. Electromagnetic Induction
- 9. AC Circuits
- 10. Optics I Mirrors and Lenses
- 11. Optics II Compound Optical Systems
- 12. Interference of Light
- 13. Diffraction of Light
- 14. Atomic Spectra

LEARNING MATERIALS:

Textbook:

Giancoli. (2013) Physics: Principles with Applications (7th ed.). Pearson.

Physics Computer Lab (Science Center 216)

Tutorial Services

Scientific calculator (logarithms, exponential, powers, roots, etc.)

Other learning materials may be required and made available directly to the student		